Dave Bourgeois and David T. Bourgeois
Upon successful completion of this chapter, you will be able to:
Please note, there is an updated edition of this book available at https://opentextbook.site. If you are not required to use this edition for a course, you may want to check it out.
As computers and other digital devices have become essential to business and commerce, they have also increasingly become a target for attacks. In order for a company or an individual to use a computing device with confidence, they must first be assured that the device is not compromised in any way and that all communications will be secure. In this chapter, we will review the fundamental concepts of information systems security and discuss some of the measures that can be taken to mitigate security threats. We will begin with an overview focusing on how organizations can stay secure. Several different measures that a company can take to improve security will be discussed. We will then follow up by reviewing security precautions that individuals can take in order to secure their personal computing environment.
When protecting information, we want to be able to restrict access to those who are allowed to see it; everyone else should be disallowed from learning anything about its contents. This is the essence of confidentiality. For example, federal law requires that universities restrict access to private student information. The university must be sure that only those who are authorized have access to view the grade records.
Integrity is the assurance that the information being accessed has not been altered and truly represents what is intended. Just as a person with integrity means what he or she says and can be trusted to consistently represent the truth, information integrity means information truly represents its intended meaning. Information can lose its integrity through malicious intent, such as when someone who is not authorized makes a change to intentionally misrepresent something. An example of this would be when a hacker is hired to go into the university’s system and change a grade.
Integrity can also be lost unintentionally, such as when a computer power surge corrupts a file or someone authorized to make a change accidentally deletes a file or enters incorrect information.
Information availability is the third part of the CIA triad. Availability means that information can be accessed and modified by anyone authorized to do so in an appropriate timeframe. Depending on the type of information, appropriate timeframe can mean different things. For example, a stock trader needs information to be available immediately, while a sales person may be happy to get sales numbers for the day in a report the next morning. Companies such as Amazon.com will require their servers to be available twenty-four hours a day, seven days a week. Other companies may not suffer if their web servers are down for a few minutes once in a while.
In order to ensure the confidentiality, integrity, and availability of information, organizations can choose from a variety of tools. Each of these tools can be utilized as part of an overall information-security policy, which will be discussed in the next section.
The most common way to identify someone is through their physical appearance, but how do we identify someone sitting behind a computer screen or at the ATM? Tools for authentication are used to ensure that the person accessing the information is, indeed, who they present themselves to be.
Authentication can be accomplished by identifying someone through one or more of three factors: something they know, something they have, or something they are. For example, the most common form of authentication today is the user ID and password. In this case, the authentication is done by confirming something that the user knows (their ID and password). But this form of authentication is easy to compromise (see sidebar) and stronger forms of authentication are sometimes needed. Identifying someone only by something they have, such as a key or a card, can also be problematic. When that identifying token is lost or stolen, the identity can be easily stolen. The final factor, something you are, is much harder to compromise. This factor identifies a user through the use of a physical characteristic, such as an eye-scan or fingerprint. Identifying someone through their physical characteristics is called biometrics.
A more secure way to authenticate a user is to do multi-factor authentication. By combining two or more of the factors listed above, it becomes much more difficult for someone to misrepresent themselves. An example of this would be the use of an RSA SecurID token. The RSA device is something you have, and will generate a new access code every sixty seconds. To log in to an information resource using the RSA device, you combine something you know, a four-digit PIN, with the code generated by the device. The only way to properly authenticate is by both knowing the code and having the RSA device.
Once a user has been authenticated, the next step is to ensure that they can only access the information resources that are appropriate. This is done through the use of access control. Access control determines which users are authorized to read, modify, add, and/or delete information. Several different access control models exist. Here we will discuss two: the access control list (ACL) and role-based access control (RBAC).
For each information resource that an organization wishes to manage, a list of users who have the ability to take specific actions can be created. This is an access control list, or ACL. For each user, specific capabilities are assigned, such as read, write, delete, or add. Only users with those capabilities are allowed to perform those functions. If a user is not on the list, they have no ability to even know that the information resource exists.
ACLs are simple to understand and maintain. However, they have several drawbacks. The primary drawback is that each information resource is managed separately, so if a security administrator wanted to add or remove a user to a large set of information resources, it would be quite difficult. And as the number of users and resources increase, ACLs become harder to maintain. This has led to an improved method of access control, called role-based access control, or RBAC. With RBAC, instead of giving specific users access rights to an information resource, users are assigned to roles and then those roles are assigned the access. This allows the administrators to manage users and roles separately, simplifying administration and, by extension, improving security.
Many times, an organization needs to transmit information over the Internet or transfer it on external media such as a CD or flash drive. In these cases, even with proper authentication and access control, it is possible for an unauthorized person to get access to the data. Encryption is a process of encoding data upon its transmission or storage so that only authorized individuals can read it. This encoding is accomplished by a computer program, which encodes the plain text that needs to be transmitted; then the recipient receives the cipher text and decodes it (decryption). In order for this to work, the sender and receiver need to agree on the method of encoding so that both parties can communicate properly. Both parties share the encryption key, enabling them to encode and decode each other’s messages. This is called symmetric key encryption. This type of encryption is problematic because the key is available in two different places.
An alternative to symmetric key encryption is public key encryption. In public key encryption, two keys are used: a public key and a private key. To send an encrypted message, you obtain the public key, encode the message, and send it. The recipient then uses the private key to decode it. The public key can be given to anyone who wishes to send the recipient a message. Each user simply needs one private key and one public key in order to secure messages. The private key is necessary in order to decrypt something sent with the public key.
So why is using just a simple user ID/password not considered a secure method of authentication? It turns out that this single-factor authentication is extremely easy to compromise. Good password policies must be put in place in order to ensure that passwords cannot be compromised. Below are some of the more common policies that organizations should put in place.
Another essential tool for information security is a comprehensive backup plan for the entire organization. Not only should the data on the corporate servers be backed up, but individual computers used throughout the organization should also be backed up. A good backup plan should consist of several components.
Besides these considerations, organizations should also examine their operations to determine what effect downtime would have on their business. If their information technology were to be unavailable for any sustained period of time, how would it impact the business?
Additional concepts related to backup include the following:
As information has become a strategic asset, a whole industry has sprung up around the technologies necessary for implementing a proper backup strategy. A company can contract with a service provider to back up all of their data or they can purchase large amounts of online storage space and do it themselves. Technologies such as storage area networks and archival systems are now used by most large businesses.
Another method that an organization should use to increase security on its network is a firewall. A firewall can exist as hardware or software (or both). A hardware firewall is a device that is connected to the network and filters the packets based on a set of rules. A software firewall runs on the operating system and intercepts packets as they arrive to a computer. A firewall protects all company servers and computers by stopping packets from outside the organization’s network that do not meet a strict set of criteria. A firewall may also be configured to restrict the flow of packets leaving the organization. This may be done to eliminate the possibility of employees watching YouTube videos or using Facebook from a company computer.
Some organizations may choose to implement multiple firewalls as part of their network security configuration, creating one or more sections of their network that are partially secured. This segment of the network is referred to as a DMZ, borrowing the term demilitarized zone from the military, and it is where an organization may place resources that need broader access but still need to be secured.
Another device that can be placed on the network for security purposes is an intrusion detection system, or IDS. An IDS does not add any additional security; instead, it provides the functionality to identify if the network is being attacked. An IDS can be configured to watch for specific types of activities and then alert security personnel if that activity occurs. An IDS also can log various types of traffic on the network for analysis later. An IDS is an essential part of any good security setup.
Using firewalls and other security technologies, organizations can effectively protect many of their information resources by making them invisible to the outside world. But what if an employee working from home requires access to some of these resources? What if a consultant is hired who needs to do work on the internal corporate network from a remote location? In these cases, a virtual private network (VPN) is called for.
A VPN allows a user who is outside of a corporate network to take a detour around the firewall and access the internal network from the outside. Through a combination of software and security measures, this lets an organization allow limited access to its networks while at the same time ensuring overall security.
An organization can implement the best authentication scheme in the world, develop the best access control, and install firewalls and intrusion prevention, but its security cannot be complete without implementation of physical security. Physical security is the protection of the actual hardware and networking components that store and transmit information resources. To implement physical security, an organization must identify all of the vulnerable resources and take measures to ensure that these resources cannot be physically tampered with or stolen. These measures include the following.
Besides the technical controls listed above, organizations also need to implement security policies as a form of administrative control. In fact, these policies should really be a starting point in developing an overall security plan. A good information-security policy lays out the guidelines for employee use of the information resources of the company and provides the company recourse in the case that an employee violates a policy.
According to the SANS Institute, a good policy is “a formal, brief, and high-level statement or plan that embraces an organization’s general beliefs, goals, objectives, and acceptable procedures for a specified subject area.” Policies require compliance; failure to comply with a policy will result in disciplinary action. A policy does not lay out the specific technical details, instead it focuses on the desired results. A security policy should be based on the guiding principles of confidentiality, integrity, and availability.[2]
A good example of a security policy that many will be familiar with is a web use policy. A web use policy lays out the responsibilities of company employees as they use company resources to access the Internet. A good example of a web use policy is included in Harvard University’s “Computer Rules and Responsibilities” policy, which can be found here.
A security policy should also address any governmental or industry regulations that apply to the organization. For example, if the organization is a university, it must be aware of the Family Educational Rights and Privacy Act (FERPA), which restricts who has access to student information. Health care organizations are obligated to follow several regulations, such as the Health Insurance Portability and Accountability Act (HIPAA).
A good resource for learning more about security policies is the SANS Institute’s Information Security Policy Page.
As the use of mobile devices such as smartphones and tablets proliferates, organizations must be ready to address the unique security concerns that the use of these devices bring. One of the first questions an organization must consider is whether to allow mobile devices in the workplace at all. Many employees already have these devices, so the question becomes: Should we allow employees to bring their own devices and use them as part of their employment activities? Or should we provide the devices to our employees? Creating a BYOD (“Bring Your Own Device”) policy allows employees to integrate themselves more fully into their job and can bring higher employee satisfaction and productivity. In many cases, it may be virtually impossible to prevent employees from having their own smartphones or iPads in the workplace. If the organization provides the devices to its employees, it gains more control over use of the devices, but it also exposes itself to the possibility of an administrative (and costly) mess.
Mobile devices can pose many unique security challenges to an organization. Probably one of the biggest concerns is theft of intellectual property. For an employee with malicious intent, it would be a very simple process to connect a mobile device either to a computer via the USB port, or wirelessly to the corporate network, and download confidential data. It would also be easy to secretly take a high-quality picture using a built-in camera.
When an employee does have permission to access and save company data on his or her device, a different security threat emerges: that device now becomes a target for thieves. Theft of mobile devices (in this case, including laptops) is one of the primary methods that data thieves use.
So what can be done to secure mobile devices? It will start with a good policy regarding their use. According to a 2013 SANS study, organizations should consider developing a mobile device policy that addresses the following issues: use of the camera, use of voice recording, application purchases, encryption at rest, Wi-Fi autoconnect settings, bluetooth settings, VPN use, password settings, lost or stolen device reporting, and backup. [3]
Besides policies, there are several different tools that an organization can use to mitigate some of these risks. For example, if a device is stolen or lost, geolocation software can help the organization find it. In some cases, it may even make sense to install remote data-removal software, which will remove data from a device if it becomes a security risk.
When looking to secure information resources, organizations must balance the need for security with users’ need to effectively access and use these resources. If a system’s security measures make it difficult to use, then users will find ways around the security, which may make the system more vulnerable than it would have been without the security measures! Take, for example, password policies. If the organization requires an extremely long password with several special characters, an employee may resort to writing it down and putting it in a drawer since it will be impossible to memorize.
We will end this chapter with a discussion of what measures each of us, as individual users, can take to secure our computing technologies. There is no way to have 100% security, but there are several simple steps we, as individuals, can take to make ourselves more secure.
You can find more about these steps and many other ways to be secure with your computing by going to Stop. Think. Connect. This website is part of a campaign that was launched in October of 2010 by the STOP. THINK. CONNECT. Messaging Convention in partnership with the U.S. government, including the White House.
As computing and networking resources have become more and more an integral part of business, they have also become a target of criminals. Organizations must be vigilant with the way they protect their resources. The same holds true for us personally: as digital devices become more and more intertwined with our lives, it becomes crucial for us to understand how to protect ourselves.
Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more